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1 Optimal treatment assignment

In section 2, we describe the experimental setup and make reference to the fact that the choice
of treatment assignment nt for each t = 1, . . . , T is a finite dynamic stochastic optimization
problem that can be solved using backward induction.

The state at the end of wave t − 1 is given by (mt−1, rt−1), and the action in t is given
by nt. The transition between states is described by mt = mt−1 + nt, rt = rt−1 + st. The
success probabilities conditional on the choice of treatment assignment follow a Beta-Binomial
distribution and are given by

P (sdt = s|mt−1, rt−1,nt) =

(
ndt
s

)
B(αdt−1 + s, βdt−1 + ndt − s)

B(αdt−1, β
d
t−1)

. (1.1)

Denote by Vt the value function after completion of wave t, that is, expected welfare assuming
that all future treatment assignment decisions will be optimal, and that the optimal policy is
implemented after the experiment. Vt is a function of the state (mt, rt). After the experiment
is concluded, the value function is given by expected welfare for the optimal choice of policy,
based on current beliefs:

VT (mT , rT ) = max
d

(
E[θd|mT , sT ]− cd

)
= max

d

(
αd

0+r
d
T

αd
0+β

d
0+m

d
T

− cd
)
. (1.2)

Denote by Ut the action value function, given by expected welfare at the beginning of wave t
when treatment assignment is nt, assuming all future assignment decisions will be optimal:

Ut(mt−1, rt−1,nt)=
∑

s:s≤nt

P (st = s |mt−1, rt−1,nt)Vt (mt−1+ nt, rt−1+ s) , (1.3)

∗Department of Economics, Oxford University, maximilian.kasy@economics.ox.ac.uk.
†World Bank, asautmann@worldbank.org.

1



where the probabilities for each vector of successes are given by Equation (1.1). Then the
period t value function and the optimal treatment assignment satisfy

Vt−1(mt−1, rt−1) = max
nt:

∑
d n

d
t≤Nt

Ut(mt−1, rt−1,nt)

n∗
t (mt−1, rt−1) = argmax

nt:
∑

d n
d
t≤Nt

Ut(mt−1, rt−1,nt). (1.4)

Together, these equations define a solution for the experimental design problem.

Computational complexity. One can solve for the optimal treatment assignment using
backwards induction. This involves enumerating all possible actions and associated outcomes
in each time period. With larger sample sizes Mt =

∑
t′≤tNt′ and a greater number of waves

T and treatments k, however, solving for the optimal assignment quickly becomes infeasible,
motivating our simpler exploration sampling approach.

We assume full memoization, where the value function is calculated and stored for every
possible state, and then action values are calculated using backwards induction. This approach
minimizes the growth of computational time in terms of the number of states and actions; cf.
Erickson (2019) chapter 3. At the end of wave t, there are

(
Mt+k−1
k−1

)
= O(Mk−1

t ) possible values
mt, and for each mt there are

∏
dm

d
t = O(Mk

t ) possible values of rt, so that the number of
possible states at the end of wave t is of order O(M2k−1

t ).
Suppose t < T . Then we need to calculate the value function in each of the possible states

(mt, rt) by maximizing over the expected action value for each possible action nt+1, where the
expectation is over each possible realization of st+1. There are

(
Nt+1+k−1

k−1

)
= O(Nk−1

t+1 ) possible
actions nt+1, and

∏
d n

d
t+1 = O(Nk

t+1) possible realizations of st+1 for each nt+1, so that the
required computation time for Vt at a given state is of order O(N2k−1

t+1 ). For t = T , we only
need to maximize over k possible actions (policy choices).

Collecting terms, we get that the computational time complexity for dynamic programming
with full memoization in this setting is of order

T−1∑
t=1

O
(
(MtNt+1)

2k−1
)
+O(M2k−1

T k), (1.5)

and the memory complexity is of order
∑T
t=1O

(
M2k−1
t

)
.

2 Optimal design in a simple example

In this section, we discuss optimal experimental designs in a simple example with two waves
to show that the optimal assignment in wave 2 assigns more units to those treatments that
performed better in wave 1.

Suppose we have ten experimental units that we can enroll in two waves. There are three
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Figure 2.1: Dividing the sample across waves.
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Notes: The graph shows the expected welfare V0 (success rate of the final choice) as a function of the sample
size N1 in period 1, assuming a total sample size of 10 and three treatments, and a uniform prior over the
three treatment success rates.

treatments. We impose a uniform prior for θ.
A first question the designer might want to consider is how to divide the total sample of 10

units between the two waves. For each division (N1, 10 −N1) between the two waves, we can
calculate expected welfare V0 at the outset of wave 1, using the value function derived above.

Figure 2.1 plots expected welfare as a function of the sample size N1 in wave 1. The
boundary cases N1 = 0 and N1 = 10 correspond to an experiment with only one wave. The
figure shows that the optimal split assigns either five or six units to the first wave. Splitting
the sample in this manner allows us to observe the outcomes from the first-wave assignment
(e.g. of two units per treatment if N1 = 6) and then assign treatments for optimal learning to
the remaining units in the second wave.1

Assigning treatments in wave 2. Based on Figure 2.1, we set N1 = 6. Due to the
symmetric prior, it is optimal to assign two units to each of the three treatments in wave 1.
Optimal assignment in wave 2, where N2 = 4, depends on the outcomes of the first wave.

We explore several scenarios in Figure 2.2. This figure plots expected welfare for any second-
wave treatment assignment in the simplex n12+n22+n32 = 4, conditional on first-wave outcomes.
For each scenario, the number of successes in each treatment in the first wave determines the
prior for treatment assignments in the second wave. Our uniform prior for θ implies a Beta
posterior with αd1 = 1 + sd1 and βd1 = 1 + 2 − sd1 for sd1 ∈ {0, 1, 2} we get. This Beta posterior
has a mean of (1 + sd1)/4.

The four outcome scenarios we consider are s1 = (1, 1, 1), s1 = (1, 1, 2), s1 = (1, 1, 0), and
1The welfare differences across alternative designs are relatively small in this setting, owing to the small

number of units involved.
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Table 1: Thompson shares and assignment shares for different Beta posteriors.
α1,2 β1,2 α3 β3 p1,2 p3 q1,2 q3
2 2 2 2 0.3333 0.3333 0.3333 0.3333
2 2 3 1 0.1548 0.6905 0.2752 0.4496
2 2 1 3 0.4548 0.0905 0.4288 0.1424
3 1 1 3 0.4940 0.0120 0.4884 0.0232

s1 = (2, 2, 0). In the first scenario, each treatment had one success and one failure, leading to
a posterior that is again symmetric across treatments. In this scenario, shown in the top left
of Figure 2.2, it is optimal to assign two units to either one of the three treatments, and one
unit to each of the other two arms.

In the second scenario, treatment 3 performed better than treatments 1 and 2. In this
scenario, shown in the top right of Figure 2.2, it is optimal to assign three units to treatment 3,
and one unit to either one of the other two arms. In the third and fourth scenario, treatment
3 performed worse than treatments 1 and 2. In these scenarios, shown in the bottom part of
Figure 2.2, it is optimal to assign no units to treatment 3, three units to either one of treatment
1 or 2, and one unit to the other treatment. Interestingly, this dominates (though not by much)
the assignment of two units to each of treatment 1 and 2.

We can compare these with the exploration sampling assignment probabilities. Table 1 lists
the Beta distribution parameters along with the Thompson shares and exploration shares for
each scenario. The Thompson sampling share for the third treatment (which in each scenario
has different numbers of successes from the first two treatments) is given by∫ 1

0

F (x, α1,2, β1,2)
2 · f(x, α3, β3)dx,

where

f(x, α, β) =
1

B(α, β)
xα−1(1− x)β−1, F (x, α, β) =

B(x;α, β)

B(α, β)
.

Discussion. In each of these examples, the largest number of units is assigned to the treat-
ment arms with the highest expected return. In addition, one unit is assigned to at least one
close competitor. This reflects that more precise effect estimates for treatment arms with low
expected return are less likely to affect the ultimate policy decision. The shift towards more
successful treatments occurs even though our objective function does not assign any weight to
the welfare of experimental units, because there is no exploitation motive. This property is
mimicked by the exploration sampling algorithm.

For this small sample, there are also properties that exploration sampling does not replicate.
In particular, an interesting feature is that a symmetric assignment is generally not optimal,
even when two treatments have the same current prior. Exploration sampling then produces
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equal shares for those two treatments. However, in the second to fourth scenario above, the
prior distribution for treatments 1 and 2 is the same, but the optimal design assigns either
more units to treatment 1 or to 2. This reflects a non-convexity in the value of information,
due to the concave objective function maxd

(
E[θd|mT , sT ]− cd

)
. This situation is analogous

to option pricing, where higher volatility can increase the value of a stock option which is only
exercised for high profit realizations.

3 Details for the calibrated simulations

In section 5 of the paper, we use data from three real experiments to conduct calibrated sim-
ulations of the various algorithms we consider. Here we describe these experiments in more
detail and show some additional graphs of the policy regret distributions.

The experiments used for calibration. Ashraf et al. (2010) conducted a field experiment
with about 1,000 households in Lusaka, Zambia. During a door-to-door sale of Clorin, a water
disinfectant, each participating household was offered to buy a bottle at a randomly chosen
price, ranging from 300 to 800 Zambian Kwacha. The study varied the offer price as well as
the actual purchase price and measured the ex-post uptake of Clorin for water disinfection at
different purchase prices, in order to test for the presence of a sunk-cost effect. The outcome
we consider here is the ‘first stage’, that is, whether the household agreed to buy the bottle of
Clorin at the original offer price.

Bryan et al. (2014) conducted a field experiment in rural Bangladesh. Households were
randomly assigned a cash or credit incentive of $8.50 (an amount covering round-trip travel),
or an information treatment, conditional on a household member migrating during the 2008
monga (lean) season. The outcome we focus on is again take-up, i.e. whether at least one
household member migrated (the first stage of the original paper).

Cohen et al. (2015) conducted a field experiment in three districts of Western Kenya. Phar-
macy visitors were randomly assigned one of three subsidy levels for the purchase of artemisinin
combination therapies (ACT), an antimalarial drug. They were also randomly offered a rapid
detection test (RDT) for malaria. The treatments in this experiment are 3 subsidy levels with
or without RDT, and a control group. The outcome is whether the subject actually bought the
ACT.

Plots of simulation results. Figures 3.1 to 3.3 compare the distribution of regret between
non-adaptive assignment and exploration sampling with probability mass functions (histograms)
and quantile functions, for two, four, and ten experimental waves.

The uniformly lower quantile function for exploration sampling, relative to non-adaptive
assignment, implies that its distribution of regret is first-order stochastically dominated. The
integrated difference between the two quantile functions equals the decrease in average regret
(increase in average welfare) that is gained from switching to exploration sampling.
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Figure 2.2: Expected welfare as a function of treatment assignment
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Notes: This figure shows the expected welfare (action value function) U2 for each possible treatment
assignment n2 = (n1

2 + n2
2 + n3

2) in wave 2 (which is of size 4), taking as given the Beta-prior parameters
α1,β1 which were determined by the outcomes of wave 1 (which is of size 6). For example, the upper right
panel is for the case where treatment 1 and 2 each had one success, but treatment 3 had 2 successes. Note that
the color scaling differs across the plots for better readability.
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Figure 3.1: The distribution of policy regret (top) and regret quantiles (bottom) in Ashraf et al.
(2010).
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Figure 3.2: The distribution of policy regret (top) and regret quantiles (bottom) in Bryan et al.
(2014).
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Figure 3.3: The distribution of policy regret (top) and regret quantiles (bottom) in Cohen et al.
(2015).
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