

Your family counts, too!
I count! You count!

Your neighbors count, too!
The Census counts people.
Make sure it counts you!

I count! You count!

I count!

Says Ellen, a very important person - age three.
Yes indeed, EVERYBODY COUNTS! Just follow along and see.
You count as a person, a very special you.
And wherever you live, that's where you count, too.
Like you, Ellen is Number 1.
To her family she's dear...

But when we count who lives in this house, we can't count her here.
This is where her grandparents live. She's just visiting for the day.
Ellen lives in a different house, though it's not so far away.
So count 2 people in this home - one, two:
Grandfather, who's Ned, and Grandmother, who's Sue.

Says Ellen to Leilani, going whoosh! down the slide.
When Ellen visits with Tranh and Khanh, they play in the yard outside. Leilani's family and Ellen's grandparents, neighbors are they,
In a row of neat townhomes along Counting Way.

She likes having friends come to play games and dress-up.
So count 3 - one, two, three - for this special family,
For her mother and father, and of course, Leilani.

Says Leilani to Tomás, her friend in the park, Who always goes everywhere with his dog, Spark.
Tomás lives with his sister, Carolina, and her husband, José,
In a white house with a red door and a roof that's gray.

Tomás' family just grew and he's happy as can be.
Carolina has a new baby, a boy named Hector Lee.
Now when Tomás counts his family he uses one finger more!
That's one, two, three - and baby Hector makes 4.

I count!

Says Keisha, in the house with the big oak tree.
Yes, EVERYBODY COUNTS! Just follow along and see.
You count as a person, a very special you.
And wherever you live, that's where you count, too.
So let's start with Keisha, who just turned four,
And count Daddy and Mommy and Grandma Moore.
Don't miss baby Latisha, who's playing on the floor.
Count 5 in Keisha's house with the tree strong and tall.
One, two, three, four, five - family members in all.

You count!

Says Keisha to her good pal, Brad.
Brad lives in the yellow house with his mom and dad,
Plus his two older brothers and gray-haired Uncle Steve,
Who does magic tricks with coins up his sleeve.
Count 6 in Brad's house - there's no trick to it. One, two, three, four, five, six - you can do it!

Your neighbors count, too!

c

Says Brad to Juanita-Sue, who lives in a building so tall. Juanita-Sue has many neighbors in the apartments down the hall. There's Mrs. Kelly - count her as one.
And two for Mr. Williams and his grandson.
And then Juanita-Sue and her parents, who total three.
Who'd we forget? Oh yes! There's only one Mr. Bonetti,
Who cooks the most delicious meatballs and spaghetti!
What's important is who counts behind each door.
It's the people who count in each apartment, on each floor.
Yes, everybody counts in this building so tall.
Count each and every person, whether big or small.

The Census

counts people!

That's right! Every single one!
It's a big job to count everybody, and here's how it's done.
You get a form in the mail or someone brings it to your door.
It says "Please, count who lives here," and a few questions more.
Then what's next? You fill out the form, like this family.
Remember Ellen? It's her family we see!
She lives on a farm with two helpers, chickens, and a pig. Count 8 people in Ellen's house - her household is so big. The form is ready to mail - and that's easy to do.
You can send it from your mailbox; the post office, too.

Make sure it counts you!

Say Ellen, Leilani, Tomás, Keisha, Brad, and Juanita-Sue.
Each family is special, each person is, too.
So count your family - it's important to do.
EVERYBODY COUNTS - and that includes YOU!
Count all the children - can you find 9 ?
One, two, three, four, five, six, seven, eight, nine - you did fine!
But we're missing a child. Do you know who?
Of course, of course, we need to count you!
So get ready to count. We'll start over again.
One, two, three, four, five, six, seven, eight, nine...

Count yourself:

Draw yourself here:

$0^{2} \pi^{2}$

 \％
\square
\sim品品
 0 mannmer
3

