enkitec

Profiling the logwriter and
database writer

This 1s the font size used for showing screen output. Be sure this i1s readable for you.

(This is the font used to accentuate text/console output. Make sure this is readable for you too!)

"whoami

Frits Hoogland
Working with Oracle products since 1996

Blog: http://fritshoogland.wordpress.com
Twitter: @fritshoogland

Email: frits.hoogland@enkitec.com
Oracle ACE Director I

Oi:lkTa‘p'le.net

OakTable Member T

enkitec

E4.-014 une

Dallas., TX - .
allas, June 2-3 er)kltec

The only conference with a focus on the platform.

* Early bird discount expires April 15, 2014.

* Quick links:
— Home: www.enkitec.com/e4
— Registration: http://www.enkitec.com/e4/reqgister
— Location: http://www.enkitec.com/e4/location

— Training Days Following E4:
http://www.enkitec.com/e4/training-days

enkitec

Goals & prerequisites

* Goal: learn about typical behaviour of both Igwr
and dbwr, both visible (wait events) and inner-
working.

* Prerequisites:

s

o/

— L

nderstanding of (internal) execution of C programes.
nderstanding of Oracle tracing mechanismes.
nderstanding of interaction between procs. with the

Oracle database.

enkitec

Test system

* The tests and investigation is done in a VM:
— Host: Mac OSX 10.9 / VMWare Fusion 6.0.2.
— VM: Oracle Linux x86 64 6u5 (UEK3 3.8.13).
— Oracle Grid 11.2.0.4 with ASM/External redundancy.

— Oracle database 11.2.0.4.

— Unless specified otherwise.

enkitec

Logwriter, concepts guide

* From the concepts guide:
— The Igwr manages the redolog buffer

— The lgwr writes all redo entries that have been copied
in the buffer since the last time it wrote when:
* User commits.
e Logswitch.
* Three seconds since last write.
o Buffer 1/3th full or 1MB filled.
 dbwr must write modified (‘dirty’) buffers.

enkitec

Logwriter, idle

* The general behaviour of the log writer can
easily be shown by putting a 10046/8 on Igwr:

SYS@v11204 AS SYSDBA> (@who
130,1,@1 2243 oracle@olob-orall204-asm.local (LGWR)

SYS@v11204 AS SYSDBA> oradebug setospid 2243

Oracle pid: 11, Unix process pid: 2243, 1image: oracle@ol6b-orall?204-asm.local (LGWR)
SYS@v11204 AS SYSDBA> oradebug unlimit

Statement processed.

SYS@v11204 AS SYSDBA> oradebug event 10046 trace name context forever, level 8§;

Statement processed.

enkitec

Logwriter, idle

* The 10046/8 trace shows:

k%% 2013-12-18 14:12:32.

WAIT #0: nam='rdbms ipc
tim=1387372352479352

k%% 2013-12-18 14:12:35.

WAIT #0: nam='rdbms ipc
tim=1387372355479531

k%% 2013-12-18 14:12:38.

WAIT #0: nam='rdbms ipc
tim=1387372358479381

xx% 2013-12-18 14:12:41.

WAIT #0: nam='rdbms ipc
tim=1387372361479499

479

message'

479

message'

479

message'

479

message'

ela= 2999925 timeout=300 p2=0 p3=0

ela= 3000075 timeout=300 p2=0 p3=0

ela= 2999755 timeout=300 p2=0 p3=0

ela= 3000021 timeout=300 p2=0 p3=0

enkitec

obj#=-1

obj#=-1
obj#=-1
obj#=-1

Logwriter, idle

* “rdbms ipc message” indicates a sleep/idle event
— There isn’t an indication Igwr writes something:

semtimedop (327683, {{15, -1, 0}}, 1, {3, 0}) = -1 EAGAIN (Resource temporarily
unavailable)

getrusage (RUSAGE SELF, {ru utime={0, 84000}, ru stime={0, 700000}, ...}) =0
getrusage (RUSAGE SELF, {ru utime={0, 84000}, ru stime={0, 700000}, ...}) =0
times ({tms utime=8, tms stime=70, tms cutime=0, tms cstime=0}) = 431286151
times ({tms utime=8, tms stime=70, tms cutime=0, tms cstime=0}) = 431286151
times ({tms utime=8, tms stime=70, tms cutime=0, tms cstime=0}) = 431286151
times ({tms utime=8, tms stime=70, tms cutime=0, tms cstime=0}) = 431286151
semtimedop (327683, {{15, -1, 0O0}}, 1, {3, 0}) = -1 EAGAIN (Resource temporarily
unavailable)

..etc..

enkitec

Logwriter, idle

* |t does look in the /proc filesystem to the ‘stat’
file of a certain process:

open ("/proc/2218/stat™, O RDONLY) = 21
read (21, "2218 (oracle) S 1 2218 2218 0 -1"..., 999) = 209
close (21)

* |t does so every 20th time (20*3)= 60 sec.
* The PID is PMON.

enkitec

Logwriter, idle

* Recap:
— In an idle database.

— The lgwr sleeps on a semaphore for 3 seconds.
* Then wakes up, and sets up the semaphore/sleep again.
* Processes sleeping on a semaphore do not spend CPU

— Every minute, Igwr reads pmon's process stats.
— lgwr doesn’t write if there’s no need.

 But what happens when we insert a row of data,
and commit that?

enkitec

Logwriter, commit

TS@//localhost/v11204 > insert into t values (1, 'aaaa', 'bbbb');
1l row created.
TS@//localhost/v11204 > commit;

Commit complete.

enkitec

Logwriter, commit - expected

[semctl(458755, 15, SETVAL, 0x7fff00000001) semtimedop (458755, {{33, -1, 013, 1, {0, 100000000}D
commit; time

H o H >
foreground A

4

- >
logwriter A\
[semtimedop(458755, {15, -1, 0}}, 1, {3, O})} semctl(458755, 33, SETVAL, 0x1)]

io_submit(139981752844288, 1,
{{0x7f5008e23480, 0, 1, 0, 2561})

io_getevents(139981752844288, 1, 128,
{{0x7f5008e23480, 0x7f5008e23480, 3584, 0}},

N

{600, 03)

enkitec

Logwriter, commit - actual

[semctl(458755, 15, SETVAL, 0x7fff00000001)

no ‘log file sync’ wait!]

commit; time
H— >
foreground 5 No semtimedop()]
/
No semctl()
v %
B e >
logwriter A\
[semtimedop(458755, {{15, -1, 0}}, 1, {3, O})}
io_submit(139981752844288, 1, io_getevents(139981752844288, 1, 128,
{{0x7f5008e23480, 0, 1, 0, 256}}) {{0x715008e23480, 0x7f5008e23480, 3584, 033,
{600, 0})

N

enkitec

Logwriter, commit

* |[nvestigation shows:

— Foreground scans log writer progress up to 3 times.
* kerf_commit_force() > kescur3()

— If its data™ in the redo log buffer is not written:
* |t notifies the Igwr that it is going to sleep on a semaphore.
* semtimedop() for 100ms, until posted by Igwr.

— If its data™ has been written:
e No need to wait on it.
* No ‘log file sync’ wait.

enkitec

Logwriter, commit

 Wait!!!
— This (no log file sync) turned out to be an edge case.

| traced the kcrf _commit_force() and kcscur3() calls using
breaks in gdb.

— In normal situations, the wait will appear.
 Depending on log writer and FG progress.
* The semtimedop() call in the FG can be absent.

— As a result, lgwr will not semctl()

enkitec

Logwriter, commit - post-wait

[kcrf_commit_force()]
semctl(458755, 15, SETVAL, 0x7fff00000001)
kescur3()]
/ N\
' timedop(458755, {{33, -1, 0}}, 1, {0, 100000000
commit; semtimedop({ 3 O P 3)

e
HH+H HH H >
foreg round log file sync § Grayed means: optional]
A
vy
rdbms ipc message V¥ log file parallel write
e n >
logwriter A\
[semtimedop(458755, {15, -1, 0}}, 1, {3, O})}
io_submit(139981752844288, 1, io_getevents(139981752844288, 1, 128,
{{0x7f5008e23480, 0, 1, 0, 256}}) {{0x7f5008e23480, 0x7f5008e23480, 3584, 031},
K {600, 03)

enkitec

adaptive log file sync

* Feature of Oracle 11.2
— Parameter ' use adaptive log file_sync'
* Set to FALSE up to 11.2.0.2

* Set to TRUE starting from 11.2.0.3
* Third value ‘POLLING_ONLY’

— Makes Oracle adaptively switch between ‘post-wait’
and polling.

— The log writer writes a notification in its logfile if it
switches between modes (if param = ‘TRUE’)

enkitec

Logwriter, commit - polling

kcrf_commit_force }
semctl(458755, 15, SETVAL, 0x7fff00000001)
kcscur3 }

/(nanosleep({0, 9409000}, Ox7fff64725480)]

HH4—+FH1 /\

Iog file sync
[nanosecs; varies]

commit;

foreground

rdbms ipc message v Iog file paraIIeI write

H H- >
logwriter A\
[semtimedop(458755, {15, -1, 0}}, 1, {3, O})}
io_submit(139981752844288, 1, io_getevents(139981752844288, 1, 128,
{{0x7f5008e23480, 0, 1, 0, 256}}) {{0x7f5008e23480, 0x7f5008e23480, 3584, 0}},
{600, 0})

N
enkitec

Logwriter, post-wait vs. polling

— No wait event ‘log file sync’ if:

* Lgwr was able to flush the committed data before the
foreground has issued kcscur3() 2/3 times in
kerf _commit_force().

— If not, the foreground starts a ‘log file sync’ wait.

* |f in “post-wait” mode (default), it will record it’s waiting
state in the post-wait queue, sleep in semtimedop() for
100ms at a time, waiting to be posted by Igwr.

* If in “polling” mode, it will sleep in nanosleep() for
computed time*, then check Igwr progress, if lgwr write
has progressed beyond its committed data SCN: end wait,
else start sleeping in nanosleep() again.

enkitec

Logwriter

* The main task of Igwr is to flush data in the
logbuffer to disk.
— The Igwr is idle when waiting on ‘rdbms ipc message’.

— There are two main* indicators of lgwr business:
e CPU time.
* Wait event ‘log file parallel write’.

* The lgwr needs to be able to get onto the CPU in
order to do process!

enkitec

Logwriter - idle

rdbms ipc message rdbms ipc message rdbms ipc message

logwriter \

[semtimedop(458755, {{15, -1, 033}, 1, {3, O})]

enkitec

rdbms ipc message rdbms ipc message

Logwriter - idle

e

logwriter

enkitec

Logwriter - idle

writer

4 Idle mode latch gets: N
‘messages’
‘mostly latch-free SCN’
‘lgwr LWN SCN’
‘KTF sga latch’
‘redo allocation’
‘messages’

- /

enkitec

Logwriter - writing

writer

4 Write mode latch gets and frees: N
‘messages’
‘mostly latch-free SCN’
‘lgwr LWN SCN’
‘KTF sga latch’
‘redo allocation’
‘messages’
‘redo writing’

- /

enkitec

Logwriter - writing

log file parallel write

T

io_submit(139981752 14288, n,

A
v

writer

{{0x7f5008e23480, 0, |0, 256}}) With the linux ‘strace’ utility,
the non-blocking syscall is visible
OR
io_getevents(139981752844288, n, 128, the blocking one syscall is visible.
{{0x7f5008e23480, 0x7f5008e23480, 3584, 01},
{0, 03)

io_getevents(139981752844288, n, 128,
{{0x7f5008e23480, 0x7f5008e23480, 3584, 03},
{600, 03)

enkitec 2

Logwriter - writing

* The event ‘log file parallel write’ is an indicator
of IO wait time for the Igwr.

— NOT 10 latency time!! E | | j
log file parallel write: 9.85ms

/

real 10 time: 7ms

AN

real 10 time: 10ms

"

[io_submit()][io_getevents()][io_getevents()]

enkitec

Logwriter wait events

* rdbms ipc message
— timeout: 300 (centiseconds; 3 seconds).
— process sleeping ~ 3 seconds on semaphore.

* |log file parallel write
— files: number of log file members.
— blocks: total number of log blocks written.

— requests: ?
* |'ve seen this differ from the actual numer of 10 requests.

enkitec

Logwriter wait events

* Let’s switch the database to synchronous IO.
— Some platforms have difficulty with AIO (HPUX!)

— Got to check if your config does use AlO.
* Found out by accident that ASM+NFS has no AlO by default.

— Good to understand what the absence of AIO means.

* |f you can’t use AIO today, you are doing it
WRONG!

enkitec

log file parallel write

~

timeout = 3s

disk asynch io=FALSE (no AlO) by
/

kslwtbctx
semtimedop - 458755 semid, timeout: $62 = {tv _sec = 3, tv nsec = 0}
kslwtectx —-- Previous wait time: 584208: rdbms ipc message

two sequential writes
(two logfiles)

pwrite64 - fd, size - 256,512
pwriteod4d - fd, size - 256,512

the wait begins AFTER the write (!)
it’s also suspiciously fast (0.8ms)

kslwtbctx N
kslwtectx —-- Previous wailit time: 782: log file parallel write
kslwtbctx

semtimedop - 458755 semid, timeout: $63 = {tv _sec = 2, tv nsec = 310000000}

kslwtectx —-- Previous wailit time: 2315982: rdbms 1pc message

enkitec

log file parallel write

disk_asynch_io=FALSE (no AlO)
Let’s add 100ms to the IOs (shell sleep 0.1)

kslwtbctx
semtimedop - 458755 semid, timeout: $3 = {tv _sec = 2, tv nsec = 900000000}
kslwtectx —-- Previous walt time: 2905568: rdbms 1pc message Two writes again. \\\
In the break a sleep of 100ms is
. . added.
pwrite6d - fd, size - 256,512 This should make the timing at
>sleep 0.1 least 200’000 /
pwrite64 - fd, size - 256,512
>sleep 0.1
The timing is 545 (0.5ms):
timing is off.
kslwtbctx
kslwtectx —-- Previous wait time: 545: log file parallel write N

enkitec

log file parallel write

* Conclusion:
— For at least Oracle version 11.2.

— When synchronous 10 (pwrite64()) is issued.
» disk_asynch_io = FALSE (ASM)
* filesystemio_options != “setall” or “asynch”
— The wait event does not time the 10 requests.

* How about the other log writer wait events?

enkitec

control file sequential read

disk_asynch_io=FALSE (no AlO)

kslwtbctx
preadod4 - fd, size - 256,16384

>sleep 0.1
kslwtectx —-- Previous walt time: 100323: control file sequential read

This event is correctly timed.

enkitec

control file parallel write

disk_asynch_io=FALSE (no AlO)

pwrite6d - fd, size - 256,16384
>sleep 0.1
kslwtbctx

kslwtectx —-- Previous wailit time: 705: control file parallel write

This event is incorrectly timed!

enkitec

log file single write

disk_asynch_io=FALSE (no AlO)

kslwtbctx
pwrite64 - fd, size - 256,512
>sleep 0.1
kslwtectx —-- Previous walt time: 104594: log file single write

This event is correctly timed.

enkitec

Logwriter wait events logswitch

* Some of these waits typically show up during a
logswitch.

— This are all the waits which are normally seen:
* 0s thread startup (semctl()-semtimedop())
» control file sequential read (pread64())

» control file parallel write (io_submit()-io_getevents())
* log file sequential read (pread64())
* log file single write (pwrite64())

* KSV master wait (semctl() post to dbwr)

 This is with AlIO enabled!
enkitec

Logwriter, timeout message
* Warning:

Warning: log write elapsed time 523ms, size 2760KB

* Printed in logwriter tracefile (NOT alert.log)

* Threshold set with parameter:
— side channel batch timeout ms (500ms)

enkitec

Logwriter: disable logging

* The “forbidden switch”: disable logging

— Do not use this for anything else than tests!

* Everything is done the same — no magic
— Except the write by the Igwr to the logfiles
— No ‘log file parallel write’
— Redo/control/data files are synced with shut normal

* A way to test if lgwr 10 influences db processing

enkitec

Logwriter: exadata

e How does this look like on Exadata?

enkitec

Logwriter: exadata

The dbwr semaphore sleep.

kslwtbctx

semtimedop - 3309577 semid, timeout: $24 = {tv_sec = 2, tv_nsec = 970000000}
kslwtectx —-- Previous wait time: 2973630: rdbms ipc message

$25 = "oss write"

$26 = "oss write" The writes are issued here.

$27 = "oss write" There is no io_submit like wait. This is not timed.

$28 = "oss write"

kslwtbctx

$29 = "oss wait" (The wait is log file parallel write, identical to non-exadata.
$30 = "oss wait" It seems to wait for all issued 10s

$31 = "oss wait"

$32 = "oss wait"

kslwtectx —-- Previous wait time: 2956: log file parallel write

kslwtbctx

semtimedop - 3309577 semid, timeout: $33 = {tv_sec = 3, tv_nsec = 0}
kslwtectx —-- Previous wait time: 3004075: rdbms ipc message

enkitec

Database writer

* From the Oracle 11.2 concepts guide:

— The DBWn process writes dirty buffers to disk under
the following conditions:
 When a server process cannot find a clean reusable buffer
after scanning a threshold of buffers, it signals DBWn to

write. DBWn writes dirty buffers to disk asynchronously if
possible while performing other processing.

 DBWn periodically writes buffers to advance the

chec
whic
chec

<point, which is the position in the redo thread from
N instance recovery begins. The log position of the

kpoint is determined by the oldest dirty buffer in the

buffer cache.

enkitec

Database writer, idle

* The 10046/8 trace shows:

xx% 2013-12-31 00:45:51.

WAIT #0: nam='rdbms ipc
tim=1388447151086891

x%xx 2013-12-31 00:45:54.

WAIT #0: nam='rdbms ipc
tim=1388447154140873

*x*x 2013-12-31 00:45:57.

WAIT #0: nam='rdbms ipc
tim=1388447157195828

xx% 2013-12-31 00:46:00.

WAIT #0: nam='rdbms ipc
tim=1388447160253960

088

message'

142

message'

197

message'

255

message'

ela= 3006219 timeout=300 p2=0 p3=0

ela= 3005237 timeout=300 p2=0 p3=0

ela= 3005258 timeout=300 p2=0 p3=0

ela= 3005716 timeout=300 p2=0 p3=0

enkitec

obj#=-1

obj#=-1
obj#=-1
obj#=-1

Database writer, idle

* “rdbms ipc message” indicates a sleep/idle event
— There isn’t an indication dbwO writes something:

semtimedop (983043, {{14, -1, 0}}, 1, {3, 0}) = -1 EAGAIN (Resource temporarily
unavailable)

getrusage (RUSAGE SELF, {ru utime={0, 31000}, ru stime={0, 89000}, ...}) =0
getrusage (RUSAGE SELF, {ru utime={0, 31000}, ru stime={0, 89000}, ...}) =0
times ({tms utime=3, tms stime=8, tms cutime=0, tms cstime=0}) = 431915044
times ({tms utime=3, tms stime=8, tms cutime=0, tms cstime=0}) = 431915044
times ({tms utime=3, tms stime=8, tms cutime=0, tms cstime=0}) = 431915044
semtimedop (983043, {{14, -1, 0}}, 1, {3, 0}) = -1 EAGAIN (Resource temporarily
unavailable)

..etc..

enkitec

Database writer, idle

* |t does look in the /proc filesystem to the ‘stat’
file of a certain process:

open ("/proc/2218/stat™, O RDONLY) = 21
read (21, "2218 (oracle) S 1 2218 2218 0 -1"..., 999) = 209
close (21)

* |t does so every 20th time (20*3)= 60 sec.
* The PID is PMON.

enkitec

Database writer, idle

* Recap:
— In an idle database.

— The dbwr sleeps on a semaphore for 3 seconds.
* Then wakes up, and sets up the semaphore/sleep again.
* Processes sleeping on a semaphore do not spend CPU

— Every minute, dbwr reads pmon's process stats.
— dbwr doesn’t write if there’s no need.

enkitec

Database writer, force write

e We can force the dbwr to write:

— Dirty some blocks (insert a row into a table).
— Force a thread checkpoint (alter system checkpoint).

* There are multiple ways, this is one of them.

enkitec

Database writer, force write

10046/8 trace:
a I

db file async 1/0 submit?!
It looks like the io_submit() call is instrumented for the dbwr!
But what does ‘requests=3’ mean for a single row update

\ checkpoint?

WAIT #0: nam='rdbms ipc message' a= 2261867 timeout=300 p2=0 p3=0 obj#=-1
tim=1388716669735046

WAIT #0: nam='db file async I/0O submit' ela= 0 requests=3 interrupt=0 timeout=0
obj#=-1 tim=1388716669735493

WAIT #0: nam='db file parallel write' ela= 21 requests=1 interrupt=0
timeout=2147483647 obj#=-1 tim=1388 566

~

elapsed time = 2.26 sec.

b/ timeout=300 So the dbwr is posted!

/

And the write, via the event ‘db file parallel write’.
***% 2014-01-03 03:37:50.465

WAIT #0: nam='rdbms ipc message' ela= 729110 timeout=73 p2=0 p3=0 obj#=-1
tim=1388716670464967

enkitec

dbwr, sgl trace + strace

* Let’s take a look at the Oracle wait events,
together with the actual system calls.

* Thatis:
— Setting a 10046/8 event for trace and waits.
— Execute strace with ‘-e write=all -e all’

enkitec

dbwr, sgl trace + strace

enkitec

io submit (140195085938688, 3, {{0x7f81lb622abl0O, 0, 1, 0, 256}, {0x7f£81b622a8a0, O,
1, 0, 256}, {0x7f81b622a630, 0, 1, 0, 256}}) = 3
write (13, "WAIT #0: nam='db file async I/O "..., 108) = 108

| 00000 57 41 49 54 20 23 30 3a 20 6e 61 6d 3d 27 64 62 WAIT #0: nam='db |

| 00010 20 66 69 6c 65 20 61 73 79 6e 63 20 49 2f 4f 20 file as ync I/0 |

| 00020 73 75 62 6d 69 74 27 20 65 6c 61 3d 20 31 20 72 submit' ela= 1 r |

| 00030 65 71 75 65 73 74 73 3d 33 20 69 6e 74 65 72 72 equests= 3 interr |

| 00040 75 70 74 3d 30 20 74 69 6d 65 6f 75 74 3d 30 20 upt=0 ti meout=0 |

| 00050 6f 62 6a 23 3d 2d 31 20 74 69 6d 3d 31 33 38 38 obj#=-1 tim=1388 |

| 00060 39 37 37 36 35 31 38 30 34 32 36 31 97765180 4261
io getevents (140195085938688, 1, 128, {{0x7f81b622abl0, 0x7f£81lb622abl0, 8192, 0},
{0x7f81b622a8a0, 0x7f81b622a8a0, 8192, 0}, {0x7f81b622a630, 0x7f81b622a630, 8192,
0y}, {600, O}) = 3
write (13, "WAIT #0: nam='db file parallel w"..., 116) = 116

| 00000 57 41 49 54 20 23 30 3a 20 6e 61 6d 3d 27 64 62 WAIT #0: nam='db |

| 00010 20 66 69 6c 65 20 70 61 72 61 6c 6Cc 65 6C 20 77 file pa rallel w |

| 00020 72 69 74 65 27 20 65 6c 61 3d 20 35 38 20 72 65 rite' el a= 58 re |

| 00030 71 75 65 73 74 73 3d 31 20 69 6e 74 65 72 72 75 quests=1 interru |

| 00040 70 74 3d 30 20 74 69 6d 65 6f 75 74 3d 32 31 34 pt=0 tim eout=214 |

| 00050 37 34 38 33 36 34 37 20 6f 62 6a 23 3d 2d 31 20 7483647 obj#=-1 |

| 00060 74 69 6d 3d 31 33 38 38 39 37 37 36 35 31 38 30 tim=1388 97765180 |

| 00070 34 35 37 39 4579 |

dbwr, sgl trace + strace

io submit(140195085938688, 3, {{0x7f8lbo622abl0, 0, 1, 0, 256}, {0x7£f81b622a8a0, O,
1, 0, 256}, {0x7f81lb622a630, 0, 1, 0, 256}}) = 3

write (13, "WAIT #0: nam='db file async I/O "..., 108) = 108

| 00000 57 41 49 54 20 23 30 3a 20 6e 61 6d 3d 27 64 62 WAIT #0: nam='db
| 00010 20 66 69 6C 65 20 61 73 79 6e 63 20 49 2f 4f 20 file as ync I/O

| 00020 73 75 62 6d 69 74 27 20 65 6c 61 3d 20 31 20 72 submit' ela= 1 r
| 00030 65 71 75 65 73 74 73 3d 33 20 69 6e 74 65 72 72 equests= 3 interr
| 00040 75 70 74 3d 30 20 74 69 6d 65 6f 75 74 3d 30 20 upt=0 ti meout=0

| 00050 6f 62 6a 23 3d 2d 31 20 74 69 6d 3d 31 33 38 38 obj#=-1 tim=1388
| 00060 39 37 37 36 35 31 38 30 34 32 36 31 97765180 4261

1o getevents (140195085938688, 1, 128, {{0x7f81b622abl0, 0x7f81lb622abl0, 8192, 0},
{0x7£81b622a8a0, 0x7f81b622a8al0, 8192, 0}, {0x7£81lb622a630, 0x7f81lb622a630, 8192,
0r}, {600, O0}) = 3

write (13, "WAIT #0: nam='db file parallel w"..., 116) = 116
| 00000 57 41 49 54 20 23 30 3a 20 6e 61 6d 3d 27 64 62 WAIT #0: nam='db |
| 00010 20 66 69 6c 65 20 70 61 72 61 6C 6C 65 6C 20 77 file pa rallel w |
| 00020 72 69 74 65 27 20 65 6¢c 61 3d 20 35 38 20 72 65 rite' el a= 58 re |
| 00030 71 75 65 73 74 73 3d 31 20 69 6e 74 65 72 72 75 quests=1 interru |
| 00040 70 74 3d 30 20 74 69 6d 65 6f 75 74 3d 32 31 34 pt=0 tim eout=214 |
| 00050 37 34 38 33 36 34 37 20 6f 62 6a 23 3d 2d 31 20 7483647 obj#=-1 |
| 00060 74 69 6d 3d 31 33 38 38 39 37 37 36 35 31 38 30 tim=1388 97765180 |
| 00070 34 35 37 39 4579 |

enkitec

dbwr, sgl trace + strace

io_submit(140195085938688,@{{Ox7f8lb622ab10, 0, 1, 0, 256}, {0x7f81b622a8a0, O,
1, 0, 256}, {0x7f£81b622a6307" 0, 1, 0, 256}}) = 3

write (13, "WAIT #0: nam='db file async I/O "..., 108) = 108
| 00000 57 41 49 54 20 23 30 3a 20 o6e 61l od 3d 27 64 62 WAIT #0: nam='db |
| 00010 20 66 69 6C 65 20 61 73 79 6e 63 20 49 2f 4f 20 file as ync I/0 |

20 31 20 72 submit' ela= 1 r
This is the MINIMAL number of requests to reap before successful. 74 65 7 equests:@interr
(min_nr - see man io_getevents) 36>
up

74 3d t@ti meout |

| 00050 of 62 6a 23 3d 2d 3\/20 74 69 6d 3d 31 33 38 38 obj#=-1 tim=1388 |
| 00060 39 37 37 36 35 31 38vV30 34 32 36 31 97765180 4261 |
io_getevents(140195085938688,@ 128, {{0x7f£81bo622abl0, 0x7f81b622abl0, 8192, 0},
ao,

{0x7£8 16 8a0;®7f81b622a8 8192, 0}, {0x7f£81b622a630, 0x7f81b622a630, 8192,
0y}, {600, 0))

write (13/\ "WAIT #R: nam='db file parallel w"..., 116) = 116
d 27 64 62 WAIT #0: nam='db
The timeout for| | getevents() is set to 600 seconds. 6c 20 77 file pa rallel w

|

' |

stry |timespec { sec, nsec } 8 20 72 65 rite' el a= 58 re |
q |

7
| 00030 71 75/ \73 74 73 3d 31 20 69 6e 74 65 72 7@est@ interru
32 3 ptim eoutl

Despite only needing 1 request, this call returned all 3.

This information is NOT EXTERNALISED (!!) 2d 31 20 (7483647) obj#=-1 |
[UUUO0U T Y 00U OO0 O o005 00 o0 oY o7 o7 oo 35 31 38 30 tim=1388 97765180 |
| 00070 34 35 37 39 4579 |

enkitec

dbwr, db file async I/O submit

e Let’s take a look at the what the documentation
says about “db file async I/O submit”:

(That's right...nothing)

enkitec

dbwr, db file async I/O submit

* My Oracle Support on “db file async I/O submit”:

'db file async I/0 submit' when FILESYSTEMIO_OPTIONS=NONE

[Article ID 1274737.1]
How To Address High Wait Times for the 'Direct Path Write Temp ' Wait Event

[Article ID 1576956.1]

* Both don’t describe what this event is.
* 1st note is only for filesystemio_options=NONE
and describes the event not being tracked prior

to version 11.2.0.2.
enkitec

dbwr, db file async I/O submit

* So the question is:
— What DOES the event “db file async I/O submit” mean?

* The obvious answer is:
— Instrumentation of the io submit() call.

* My answer Is:

— Don’t know.
— But NOT the instrumentation of io _submit().

enkitec

dbwr, db file async I/O submit

 This is a trace of the relevant C functions:

2 Waiting on a semaphore to be posted. >
kslwtbctx

kslwtectx —-- Previous walt time: 236317: rdbms ipc message

4 io_submit() for 3 10s)
io submit - 3,45e5a000 - nr,ctx
kslwtbet x The begin of the wait starts AFTER the io_submit()? >
kslwtectx —-- Previous wait time: 688: db file async I/0 submit
kslwtbot x < io_getevevents() is properly timed. min_nr=1, got 3 10s >
io getevents - 1,45e5a000 - minnr,ctx,timeout: $3 = {tv _sec = 600, tv nsec = 0}

skgfr returno4 - 3 IOs returned

kslwtectx —-- Previous walt time: 9604: db file parallel write

enkitec

dbwr, db file async I/O submit

* Trace with sleep 0.1 in the break on io submit()

; Waiting on a semaphore to be posted. >

kslwtbctx
kslwtectx —-- Previous wait time: 385794: rdbms ipc message
4 io_submit() for 3 10s + sleep of 100’000 >
io submit - 3,45e5a000 - nr,ctx
> sleep 0.1 Wait time too low. io_submit() is not timed. >
kslwtbctx
kslwtectx —-- Previous wait time: 428: db file async I/0 submit
kslwtbctx
io getevents - 1,45e5a000 - minnr,ctx,timeout: $37 = {tv sec = 600, tv nsec = 0}

skgfr returno64 - 3 IOs returned

kslwtectx —-- Previous wait time: 8053: db file parallel write

enkitec

dbwr, db file parallel write

* Let’s look at the “db file parallel write” event.

enkitec

dbwr, db file parallel write

* Description from the Reference Guide:

(Correct Correct...but only if AlO is enabled.)

db file parallel write

This event occurs in the DBWR. It indicates that the DBWR is performing a parallel write to
files and blocks. When the last I/O has gone to disk, the wait ends.< N)

Wait Time: Wait until all of the I/Os are completed N)
Parameter C Incorrect)
Description

requests: This indicates the total number of I/O requests, which will be the same as blocks

interrupt: < Empty?)

timeout: This indicates the timeout value in hundredths of a second to wait for the I/O
completion.

4 I
Probably incorrect.

Or does a timeout of
2°147°483’647
/100/60/60/24=
248.55 days
Make sense to
anybody?

enkitec

dbwr, db file parallel write

* Recap of previous traced calls:

kslwtbctx

kslwtectx —-- Previous walt time: 236317: rdbms ipc message

io submit {::)45e5a000 - nr,ctx

kslwtbctx

kslwtectx —-- Previous wait time: 688: db file async I/0 submit

kslwtbctx

1o getevents 45e5a000 - minnr,ctx, timeout: $3 = {tv_sec = 600, tv nsec = 0}
skgfr returnod ITO0s returned

kslwtectx —-- Previou alt time: 9604: db file parallel write

So....how about severely limiting OS 10 capacity and see what happens?

enkitec

dbwr, db file parallel write

e Database writer — severelv limited 10 (1 IOPS)

io submit - 366,45et=00n 366 10 requests are submitted onto the OS.
kslwtbctx L
kslwtectx —-- Previous wait time: 1070: db file async I/0 submit

(But only 100 I0s are needed to satisfy io_getevents()
kslwtbctx Which it does in this case... leaving outstanding 10s

io getevents - 100,45e5a000 - minnr,ctx,timeout: $7 = {tv_sec = 600, tv _nsec 0}
skgfr returno4 - 100 IOs returned

kslwtectx —-- Previous wailt time: 109334845: db file parallel write

io getevents - 128,45e5a000 - minnr,ctx,timeout: $8 = {tv _sec = 0, tv nsec = 0}

1o getevents - 128,45e5a tx,timeout: $9 = {tv sec = 0, tv nsec = 0}

The dbwr starts issuing non-blocking calls to reap 10s!
It seems to be always 2 if outstanding 10s remain.
Minnr = # outstanding 10s, max 128.

io submit - 73,45e5a000 - nr,ctx
kslwtbctx

kslwtectx —-- Previous wait time: 486: db file async I/0 submit

enkitec

dbwr, db file parallel write

This got me thinking...
The dbwr submits the 10s it needs to write.

But it waits for a variable amount of 10s to finish.
— Wait event ‘db file parallel write’.

— Amount seems 33-25% of submitted |0s*

— After that, 2 tries to reap the remaining I0s*

— Then either submit again, DFPW until 10s reaped or
back to sleeping on semaphore.

enkitec

dbwr, db file parallel write

* This means ‘db file parallel write’ is not:
— Physical 10 indicator.
— |0 latency timing

* |'ve come to the conclusion that the blocking
0 getevents call for a number of |Os of the dbwr
is an 10 limiter.

e ..and 'db file parallel write’ is the timing of it.

enkitec

dbwr, synchronous IO

e Let’s turn AlO off again.

— To simulate this, I've set disk_asynch_io to FALSE.

 And set a 10046/8 trace and strace on the dbwr.

* And issue the SQLs as before:

— insert into followed by commit
— alter system checkpoint

enkitec

dbwr, synchronous IO

pwrlte(256. "\ A\ 2425\ N\ N\ r\r\:,f

8192, 8053121024) = 8192
pwrite (256, "\2\242\0\0\246\0\300\N0ORG\I7\NONONONI\4\ZZ0T\NONO\3\0\\ 0]

3 pwrite() calls. This is synchronous 10!

\3\0\NON203\0ON\N17\17"..., 8192, 7443103744) = 8192

pwrite (256, "&\242\0\0\240\0\300\0hG
NI7N0NONON2\4\372\216\0\N0\NO\NONONONONONONONONONONO" ..., 8192, 7443054592) = 8192
write (11, "WAIT #0: nam='db file parallel w"..., 107) = 107

| ANANNNN | i | A 1 A O |l | DN AN S IWAY) DN Vi £ 1 VAl o N | [W Vy

62 WAIT #0: nam='db
The db file parallel write wait event shows 3 requests! 77 file pa rallel w
rite' el a= 20 re

|
| |
| |
| 00030 71 75 65 73 74 73 3d 33 20 69 6e 74 65 72 72 que =3 1nterru |
| |
| |

|

00040 70 74 3d 30 20 74 69 6d 65 6f 75 74 3d 30 20 6f pt=0 tim eout=0 o
00050 62 b6a 23 3d 2d 31 20 74 69 6d 3d 31 33 38 39 38 bj#=-1 t im=13898

| 00060 30 32 32 38 31 34 35 36 37 34 30 02281456 740
write (11, "WAIT #0: nam='db file parallel w"..., 106) = 106
| 00000 R7 471 49 54 20 23 30 3a 20 6e 61 6d 3d 27 64 62 WAIT #0: nam="db
But why a second db file parallel write wait event? 77 file pa rallel w

rite' el a= 1 req

00040 74 3d 30 20 74 69 od 65 o6f 75 74 3d 30 20 6f 62 t=0 time out=0 ob
00050 6a 23 3d 2d 31 20 74 69 6d 3d 31 33 38 39 38 30 J#=-1 ti m=138980

|
|
|
UU3U 75 65 73 74 73 30 33 ZU ©9 b6e 74 o 7Z 7Z 75 70 uests=3 interrup |
|
|
00060 32 32 38 31 34 35 38 34 39 32 22814584 92 |

enkitec

dbwr, synchronous IO

* There’s no ‘db file async I/O submit’ wait
anymore.
— Which is good, because SIO has no submit phase.

* The ‘db file parallel write’” waits seem suspicious.
— It seems like the wait for DFPW is issued twice.

— Further investigation shows that it does.
My guess this is a bug in the sync. IO implementation.

* Let’s look a level deeper and see if there’s more
to see.

enkitec

dbwr, synchronous IO

This is clearly the semaphore being posted: timeout=3s,
wait time = 1239,2ms

kslwtbctx
semtimedop - 458755 semid, timeout: 8 = {tv_sec = 3, tv nsec = 0}
kslwtectx —-- Previous wailit time: 1239214: rdbms ipc message

3 10’s in serial using pwrite().

pwrite6b4 - fd, size - 256,8192 The only possibility if there isn’t AlO of course.

pwrite6d - fd, size - 256,8192
pwrite6d - fd, size - 256,8192

Two db file parallel write (which aren’t parallel) for which
both the begin of the waits are started AFTER the 10 (!!)

kslwtbctx
kslwtectx -- time: 949: db file parallel write
kslwtbctx
kslwtectx —-- Previous wait time: 650: db file parallel write
kslwtbctx

semtimedop - 458755 semid, timeout: $19 = {tv _sec = 1, tv _nsec = 620000000}

After the 10s are done, the dbwr continues sleeping.

enkitec

dbwr, synchronous IO

e Let’s do the same trick as done earlier:

— In gdb, add “shell sleep 0.1” to the pwrite call.
— This makes the execution of this call take 100ms longer.
— To see if there’s still some way Oracle times it properly.

enkitec

dbwr, synchronous IO

kslwtbctx

semtimedop - 458755 semid, timeout: $23 = {tv _sec = 3, tv nsec = 0}

kslwtectx —-- Previous wait time: 92080: rdbms ipc message

pwrite6d - fd, size - 256,8192 The 3 10s again, each sleeps in pwrite() for 100ms (0.1s)

> shell sleep 0.1

pwrite6d - fd, size - 256,8192
> shell sleep 0.1

pwrite6d - fd, size - 256,8192

> shell sleep 0.1 Yet the ‘db file parallel write’ wait shows a waiting time of 478;
which is 0.478ms: the timing is wrong.

kslwtbctx
kslwtectx —-- Previous wait time: 478: db file parallel write
kslwtbctx
kslwtectx —-- Previous wait time: 495: db file parallel write
kslwtbctx

semtimedop - 458755 semid, timeout: $24 = {tv_sec = 2, tv_nsec = 460000000}

enkitec

dbwr, synchronous IO

* S0, my conclusion on the wait events for the
dbwr with synchronous IO:
— The events are not properly timed
— It seems like the wait for DFPW is issued twice.

— Further investigation shows that it does.
My guess this is a bug in the sync. IO implementation.

enkitec

dbwr: exadata

e How does this look like on Exadata?

enkitec

dbwr: exadata

The dbwr semaphore sleep. }
kslwtbctx
semtimedop - 3309577 semid, timeout: $389 = {tv_sec = 3, tv _nsec = 0}
kslwtectx —-- Previous wait time: 1266041: rdbms ipc message
$390 = "oss write"
$391 = "oss write" The writes are issued here.
$392 = "oss:write" This is not timed. j
$393 = "oss write"
$394 = "oss write"
$395 = "oss write" (There is the db file async 1/0 submit. }
Again, it doesn’t seem to time any of the typical IO calls!
kslwtbctx
kslwtectx —-- Previous wait time: 684: db file async I/0 submit
kslwtbetx (And there we got the. db file parallel.write.
$396 = "oss wait" It does seem to always time two oss_wait() calls...
$397 = "oss wait"
kslwtectx —-- Previous walt time: 2001: db file parallel write
$398 = "oss wait"
3399 = "oss_wait” But it looks for more IOs to finish, alike the trailing io_getevents() calls.
5400 = "oss_wait" | am quite sure oss_wait() is a blocking call...
$401 = "oss wait"

semctl - 3309577,23,16 - semid, semnum, cmd

kslwtbctx
semtimedop - 3309577 semid, timeout: $402 = {tv_sec = 1, tv _nsec = 630000000}
kslwtectx —-- Previous wailt time: 1634299: rdbms 1pc message

enkitec

Conclusion

* Logwriter:
— When idle, is sleeping on a semaphore/rdbms ipc message
— Gets posted with semctl() to do work.
— Only writes when it needs to do so.
— Version 11.2.0.3: two methods for posting FGs:
— Polling and post/wait.
— Post/wait is default, might switch to polling.
— Notification of switch is in log writer trace file.
— Polling/nanosleep() time is variable.

enkitec

Conclusion

* Logwriter:
— Log file parallel write
— AlO: two io_getevents() calls.
— AlO: time waiting for all lgwr submitted 10s to finish.
— Not 10 latency time!
— S10: does not do parallel writes, but serial.
— S10: does not time |0.

enkitec

Conclusion

* Logwriter:
— Wait event 10 timing:

— All the “* parallel read” and “* parallel write’ events do
not seem to time 10 correctly with synchronous IO.

— All the events which cover single block |Os do use
synchronous |0 calls, even with asynchronous 10 set.

— Logwriter writes a warning when IO time exceeds 500ms in
the log writer trace file.

— disable logging *only* disables write to logs.

enkitec

Conclusion

* Database writer:
— When idle, is sleeping on a semaphore/rdbms ipc message
— Gets posted with semctl() to do work.
— Only writes when it needs to do so.
— Since version 11.2.0.2, event ‘db file async I/O submit’:
— Is not shown with synchronous I/O.
— Shows the actual amount of 10s submitted.
— Does not time io _submit()
— Unknown what or if it times something.

enkitec

Conclusion

* Database writer:
— Event ‘db file parallel write’:
— Shows the minimal number io _getevents() waits for.

— The number of requests it waits for varies, but mostly
seems to be ~ 25-33% of submitted I0s.

— After the timed, blocking, io getevents() call, it issues
two non-blocking io getevents() calls for the remaining
non-reaped |0s, if any.

— My current idea is the blocking io_getevents() call is an
|0 throttle mechanism.

enkitec

Conclusion

* Database writer:
— Event ‘db file parallel write’, with synchronous 10:
— pwrite64() calls are issued serially.
— These are not timed.
— The event is triggered twice.

— On exadata, two out of the total number of oss wait() calls
are timed with the event ‘db file parallel write’.

enkitec

Q&A

enkitec

Thanks & Links

Enkitec

Tanel Poder, Martin Bach, Klaas-Jan Jongsma, Jeremy
Schneider, Karl Arao, Michael Fontana.

http://www.pythian.com/blog/adaptive-log-file-
sync-oracle-please-dont-do-that-again/

http://files.e2sn.com/slides/
Tanel Poder log file sync.pdf

enkitec

http://www.pythian.com/blog/adaptive-log-file-sync-oracle-please-dont-do-that-again/
http://files.e2sn.com/slides/Tanel_Poder_log_file_sync.pdf

