Skip to main content

Advertisement

Log in

Tungsten Contamination of Soils and Sediments: Current State of Science

  • Land Pollution (G Hettiarachchi, Section Editor)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Tungsten (W) is commonly employed as a non-toxic alternative to lead in a broad variety of industrial and military applications. However, correlations between environmental contamination through soil, water and airborne pathways, and biological effects such as epithelial damage, bioaccumulation, and trophic mobility, have led to its classification as an “emerging contaminant.” Of particular concern are recent clusters of childhood leukemia and lung cancer in the vicinity of tungsten mines and processing facilities. High environmental tungsten availability has also been associated with altered thyroid function, cardiovascular disease, and prolonged elevation of concentrations in blood, breath, and urine. Tungsten’s use as a replacement for lead (Pb) in military munitions has resulted in leaching of tungsten into soil and into soft tissues in which bullet fragments are embedded. Despite these associations, no consensus has been reached regarding the mechanisms by which tungsten affects the human body. Particularly confounding are the issues of co-toxicity with other known contaminants such as arsenic, cobalt, and cadmium, and differences resulting from the various methods of ingestion. The present paper summarizes the current behavior of tungsten in the environment, its occurrence within the pedosphere, biosphere, and atmosphere, and discusses its potential effects on exposed biota (especially humans). In particular, knowledge gaps are identified regarding the biological mechanisms of tungsten-related disease, which urgently require further elucidation in order to develop appropriate policies and management practices for the use of this element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Environmental Protection Agency. Emerging contaminant—tungsten. Technical Fact Sheet. 2008.

  2. Sauvé S, Desrosiers M. A review of what is an emerging contaminant. Chemistry Central Journal. 2015;8(15). doi:10.1186/1752-153X-8-15.

  3. Environmental Protection Agency. Technical fact sheet—tungsten. January 2014.

  4. Kashiwabara T, Takahashi Y, Marcus MA, Uruga T, Tanida H, Terada Y, Usui A. Tungsten species in natural ferromanganese oxides related to its different behavior from molybdenum in oxic ocean. Geochemica et Cosmochima Acta. 2013;106:364–78.

    Article  CAS  Google Scholar 

  5. Barker JC, Swainbank RC. A tungsten-rich porphyry molybdenum occurrence at Bear Mountain, Northeast Alaska. Econ Geol. 1987;81:1753–9.

    Article  Google Scholar 

  6. Štemprok M. Solubility of tin, tungsten and molybdenum oxides in felsic magmas. Mineraleum Deposita. 1990;25:205–2.

    Article  Google Scholar 

  7. Che XD, Linen RL, Wang RC, Aseri A, Thibault Y. Tungsten solubility in evolved granitic melts: an evaluation of magmatic wolframite. Geochim Cosmochim Acta. 2016;106:84–98.

    Article  Google Scholar 

  8. Newberry RJ. Tungsten-bearing skarns of the Sierra Nevada; I: the Pine Creek Mine, California. American Geological Institute. 1982;77(4):823–44.

    CAS  Google Scholar 

  9. Naumov VB, Dorofeev VA, Mironova OF. Physiochemical parameters of the formulation of hydrothermal deposits: a fluid inclusion study. I. Tin and tungsten deposition. Geochem Int. 2011;49(10):1002–21.

    Article  CAS  Google Scholar 

  10. Zhao Z, Li J, Wang S, Li H, Liu M, Sun P, Li Y. Extracting tungsten from scheelite concentrate with caustic soda by autoclaving process. Hydrometallurgy. 2011;108:152–6.

    Article  CAS  Google Scholar 

  11. Romer RL, Kroner U. Phanerozoic tin and tungsten mineralization—tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res. 2016;31:60–95.

    Article  CAS  Google Scholar 

  12. U.S. Geological Survey, Mineral Commodity Summaries. 2016.

  13. Koutsospyros A, Braida W, Christodoulatos C, Dermatas D, Strigul N. A review of tungsten: from environmental obscurity to scrutiny. J Hazard Mater. 2006;136:1–19.

    Article  CAS  Google Scholar 

  14. Budavari S, O’Neil M, Smith A. The Merck index. 12th ed. Whitehouse Station, NJ: Merck & Company, Inc.; 1996. p. 414.

    Google Scholar 

  15. Luo L, Miyazaki T, Shibayama A, Yen W, Fujita T. A novel approach for the recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap. Miner Eng. 2003;16:665–70.

    Article  CAS  Google Scholar 

  16. Paulino JF, Afonso JC, Mantovano JL, Vianna CA, da Cunha JWSD. Recovery of tungsten by liquid-liquid extraction from a wolframite concentrate after fusion with sodium hydroxide. Hydrometallurgy. 2012;127-128:121–4.

    Article  CAS  Google Scholar 

  17. Wilson B, Pyatt FB. Bio-availability of tungsten in the vicinity of an abandoned mine in the English Lake District and some potential health implications. Sci Total Environ. 2006;370:401–8.

    Article  CAS  Google Scholar 

  18. Wilson B, Pyatt FB. Bioavailability of tungsten and associated metals in calcareous soils in the vicinity of an ancient metalliferous mine in the Corbieres area, southwestern France. Journal of Technology and Environmental Health. 2009;72(13):807–16.

    Article  CAS  Google Scholar 

  19. U.S. Geological Survey. 2007.

  20. U.S. Geological Survey, Mineral Commodity Summaries. 2008.

  21. U.S. Geological Survey, Mineral Commodity Summaries. 2009.

  22. U.S. Geological Survey, Mineral Commodity Summaries. 2010.

  23. U.S. Geological Survey, Mineral Commodity Summaries. 2011.

  24. U.S. Geological Survey, Mineral Commodity Summaries. 2012.

  25. U.S. Geological Survey, Mineral Commodity Summaries. 2013.

  26. U.S. Geological Survey, Mineral Commodity Summaries. 2014.

  27. U.S. Geological Survey, Mineral Commodity Summaries. 2015.

  28. Legget RW. A model of the distribution and retention of tungsten in the human body. Sci Total Environ. 1997;206(2–3):147–65.

    Article  Google Scholar 

  29. Kabata-Pendias A and Mukherjee AB. Trace elements from soil to human. Springer Science and Business Media; 2007.

  30. Bednar AJ, Jones WT, Boyd RE, Ringelberg DB, Larson SL. Geochemical parameters influencing tungsten mobility in soils. J Environ Qual. 2008;37:229–33.

    Article  CAS  Google Scholar 

  31. Johannesson KH, Dave HB, Mohajerin J, Datta S. Controls on tungsten concentrations in groundwater flow systems: the role of adsorption, aquifer sediment Fe(III) oxide/oxyhydroxide content, and thiotungstate formation. Chem Geol. 2013;351:76–94.

    Article  CAS  Google Scholar 

  32. Tuna GS, Braida W, Oqundipe A, Strickland D. Assessing tungsten transport in the vadose zone: from dissolution studies to soil columns. Chemosphere. 2012; 86:1001–7.

  33. Clausen JL, Bostick BC, Bednar AJ, Sun J, Landis JD. Tungsten speciation in firing range soils. ERDC TR-11-1 Tungsten speciation in firing range soils. 2011; 1–69.

  34. Sun J, Bostick BC. Effects of tungstate polymerization on tungsten(VI) adsorption on ferrihydrite. Chem Geol. 2015;417:21–31.

    Article  CAS  Google Scholar 

  35. Li R, Luan R, Lin C, et al. Tungstate adsorption onto oxisols in the vicinity of the world’s largest and longest-operating tungsten mine in China. RSC Adv. 2014;4(109):63875–81.

    Article  CAS  Google Scholar 

  36. Xu N, Christodoulatos C, Braida W. Modeling the competitive effect of phosphate, sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite. Chemosphere. 2006;64(8):1325–33.

    Article  CAS  Google Scholar 

  37. Gustafsson JP. Modelling molybdate and tungstate adsorption to ferrihydrite. Chem Geol. 2003;200(1–2):105–15.

    Article  CAS  Google Scholar 

  38. Bednar AJ, Jones WT, Chappell MA, Johnson DR, Ringelberg DB. A modified acid digestion procedure for extraction of tungsten from soil. Talanta. 2010;80:1257–63.

    Article  CAS  Google Scholar 

  39. Lin C, Li R, Cheng H, Wang J, Shao W. Tungsten distribution in soil and rice in the vicinity of the world’s largest and longest-operating tungsten mine in China. PLoS One. 2014;9(3):E91981.

    Article  Google Scholar 

  40. Clausen JL, Korte N. Environmental fate of tungsten from military use. Sci Total Environ. 2009;407:2887–93.

    Article  CAS  Google Scholar 

  41. Bednar AJ, Boyd RE, Jones WT, McGrath CJ, Johnson DR, Chappell MA, Ringelberg DB. Investigations of tungsten mobility in soil using column tests. Chemosphere. 2009;75:1049–56.

    Article  CAS  Google Scholar 

  42. Felt D, Larson S, Griggs C, Nestler C, Wynter M. Relationship of surface changes to metal leaching from tungsten composite shot exposed to three different soil types. Chemosphere. 2011;83:955–62.

    Article  CAS  Google Scholar 

  43. Seiler RL, Stollenwerk KG, Garbarino JR. Factors controlling tungsten concentrations in ground water, Carson desert, Nevada. Appl Geochem. 2005;20:423–41.

    Article  CAS  Google Scholar 

  44. Johnson DR, Ang C, Bednar AJ, Inouye LS. Tungsten effects on phosphate-dependent biochemical pathways are species and liver cell line dependent. Toxicol Sci. 2010;116(2):523–32.

    Article  CAS  Google Scholar 

  45. Strigul N, Koutsospyros A, Christodoulatos C. Tungsten speciation and toxicity: acute toxicity of mono- and poly-tungstates to fish. Ecotoxicol Environ Saf. 2010;73:164–71.

    Article  CAS  Google Scholar 

  46. Strigul N. Does speciation matter for tungsten ecotoxicology? Ecotoxicol Environ Saf. 2010;73(6):1099–113.

    Article  CAS  Google Scholar 

  47. Mohajerin TJ, Helz GR, White CD, Johannesson KH. Tungsten speciation in sulfidic waters: determination of thiotungstate formation constants and modeling their distribution in natural waters. Geochemica et Cosmochimica Acta. 2013;144:157–72.

    Article  Google Scholar 

  48. Mohajerin MJ, Neal AW, Telfeyan K, Sasiharan SM, Ford S, Yang N, Chevis DA, Grimm DA, Datta S, White CD, Johannesson KH. Geochemistry of tungsten and arsenic in aquifer systems: a comparative study of groundwaters from West Bengal, India, and Nevada, USA. Water Air Soil Pollution. 2014;225:1792. doi:10.1007/s11270-013-1792-x.

  49. Mohajerin MJ, Helz GR, Johannesson KH. Tungsten–molybdenum fractionation in estuarine environments. Geochim Cosmochim Acta. 2016;177:105–19.

    Article  CAS  Google Scholar 

  50. Gammons CH, Pape BL, Parker SR, Poulson SR, Blank CE. Geochemistry, water balance, and stable isotopes of a “clean” pit lake at an abandoned tungsten mine, Montana, USA. Appl Geochem. 2013;36:57–69.

    Article  CAS  Google Scholar 

  51. Torres J, Tissot F, Santos P, Ferrari C, Kremer C, Kremer E. Interactions of W(VI) and Mo(VI) oxyanions with metal cations in natural waters. J Solut Chem. 2016;45:1598–611.

    Article  CAS  Google Scholar 

  52. Sheppard PR, Toepfer P, Schumacher E, Rhodes K, Ridenour G, Witten ML. Morphological and chemical characteristics of airborne tungsten particles of Fallon, Nevada. Microsc Microanal. 2007;13:296–303.

    Article  CAS  Google Scholar 

  53. Sheppard PR, Ridenour G, Speakman RJ, Witten ML. Elevated tungsten and cobalt in airborne particulates in Fallon, Nevada: possible implications for the childhood leukemia cluster. Appl Geochem. 2006;21:152–65.

    Article  CAS  Google Scholar 

  54. Stefaniak AB, Virji MA, Day GA. Characterization of exposures among cemented tungsten carbide workers. Part I: size-fractionated exposures to airborne cobalt and tungsten particles. Journal of Exposure Science and Environmental Epidemiology. 2009;19:475–91.

    Article  CAS  Google Scholar 

  55. Armstead AL, Arena CB, Li B. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro. Toxicol Appl Pharmacol. 2014;278:1–8.

    Article  CAS  Google Scholar 

  56. Sheppard PR, Speakman RJ, Farris C, Witten ML. Multiple environmental monitoring techniques for assessing spatial patterns of airborne tungsten. Environmental Science & Technology. 2007;41:406–10.

    Article  CAS  Google Scholar 

  57. Sheppard PR, Speakman RJ, Ridenour G, Witten ML. Using lichen chemistry to assess airborne tungsten and cobalt in Fallon, Nevada. Environ Monit Assess. 2007;130:511–8.

    Article  CAS  Google Scholar 

  58. Sheppard PR, Ridenour G, Speakman RJ, Witten ML. Reply to comment on “Elevated Tungsten and Cobalt in Airborne Particulated in Fallon, Nevada: Possible Implications for the Childhood Leukemia Cluster”, by Blasland, Bouck & Lee, Inc. Appl Geochem. 2006;21:1086–91.

    Article  CAS  Google Scholar 

  59. Dept. of Health, Education and Welfare. Criteria for a recommended standard: occupational exposure to tungsten and cemented tungsten carbide. Menlo Park: Dept. of Health, Education, and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health; 1997.

    Google Scholar 

  60. Kennedy AJ, Johnson DR, Seiter JM, Lindsay JH, Boyd RE, Bednar AJ, Allison PG. Tungsten toxicity, bioaccumulation, and compartmentalization into organisms representing two trophic levels. Environmental Science & Technology. 2012;46:9646–52.

    Article  CAS  Google Scholar 

  61. Johnson DR, Inouye LS, Bednar AJ, Clarke JU, Winfield LE, Boyd RE, Ang CY, Goss J. Tungsten bioavailability and toxicity in sunflowers (Helianthus annus L.). Land Contamination and Reclamation. 2009;17(1):141–51.

    Article  Google Scholar 

  62. Strigul N, Koutsospyros A, Arienti P, Christodoulatos C, Dermatas D, Braida W. Effects of tungsten on environmental systems. Chemosphere. 2005;61:248–58.

    Article  CAS  Google Scholar 

  63. Allison PG, Seiter JM, Diaz A, Lindsay JH, Moser RD, Tappero RV, Kennedy AJ. Gastropod (Otala lactea) shell nanomechanical and structural characterization as a biomonitoring tool for dermal and dietary exposure to a model metal. J Mech Behav Biomed Mater. 2016;53:142–50.

    Article  CAS  Google Scholar 

  64. Inouye LS, Jones RP, Bednar AJ. Tungsten effects on survival, growth, and reproduction in the earthworm, Eisenia fetida. Environ Toxicol Chem. 2006;25(3):763–8.

    Article  CAS  Google Scholar 

  65. Bamford JE, Butler AD, Heim KE, Pittinger CA, Lemus R, Staveley JP, Lee KB, Venezia C, Pardus MJ. Toxicity of sodium tungstate to earthworm, oat, radish and lettuce. Environ Toxicol Chem. 2011;30(10):2312–8.

    Article  CAS  Google Scholar 

  66. Attanayake CP, Hettiarachchi GM, Harms A, Presley D, Martin S, Pierzynski GM. Field evaluations on soil plant transfer of lead from an urban garden soil. J Environ Qual. 2014;43:475–87.

    Article  Google Scholar 

  67. Kühnel D, Busch W, Meiβer T, Springer A, Potthoff A, Richter V, Gelinsky M, Scholz S, Schirmer K. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Aquat Toxicol. 2009;93:91–9.

    Article  Google Scholar 

  68. Turkez H, Sonmez E, Turkez O, Mokhtar YI, Di Stefano A, Turgut G. The risk evaluation of tungsten oxide nanoparticles in cultured rat liver cells for its safe applications in nanotechnology. Brazilian Archives of Biology and Tecnhology. 2014;57(4):532–41.

    Article  CAS  Google Scholar 

  69. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–16.

    Article  CAS  Google Scholar 

  70. Sachdeva S, Kushwaha P, Flora SJS. Effects of sodium tungstate on oxidative stress enzymes in rats. Toxicol Mech Methods. 2013;23(7):519–527.

  71. Seiler RL. Comment on “Elevated Tungsten and Cobalt in Airborne Particulates in Fallon, Nevada: Possible Implications for the Childhood Leukemia Cluster” by P.R. Sheppard, G. Ridenour, R.J. Speakman, and M.L. Witten. Appl Geochem. 2006;21:713–4.

    Article  CAS  Google Scholar 

  72. Sheppard PR, Bierman BJ, Rhodes K, Rideour G, Witten ML. Comparison of size and geography of airborne tungsten particles in Fallon, Nevada, and sweet home, Oregon, with implications for public health. J Environ Public Health. 2012;2012:509458. doi:10.1155/2012/509458.

  73. Sueker, Julie K. Comment on “Elevated Tungsten and Cobalt in Airborne Particulates in Fallon, Nevada: Possible Implications for the Childhood Leukemia Cluster” by P.R. Sheppard, G. Ridenour, R.J. Speakman, and M.L. Witten. Appl Geochem. 2006;21:1083–5.

    Article  CAS  Google Scholar 

  74. United States Center for Disease Control. A cross-sectional exposure assessment of environmental exposures in Churchill County, Nevada, US Centers for Disease Control and Prevention, Atlanta. 2003.http://www.cdc.gov/nceh/clusters/fallon (Accessed 06/08/2016).

  75. Bolt AM, Sabourin V, Molina MF, Negro Silva LF, Plourde D, Lemaire M, Ursini-Siegel J, Mann KK. Tungsten targets the tumor microenvironment to enhance breast cancer metastasis. Society of Toxicology. 2015;143(1):165–77.

    Article  CAS  Google Scholar 

  76. US Agency for Toxic Substances and Disease Registry. 2003. Exposure to tungsten in three Nevada communities, report submitted to the Nevada State Health Division. June 2003. https://www.cdc.gov/nceh/clusters/fallon/tungsten_report.pdf. (Accessed 06/08/2016).

  77. Guandalini GS, Zhang L, Fornero E, Centeno JA, Mokashi VP, Ortiz PA, Stockelman MD, Osterburg AR, Chapman GG. Tissue distribution of tungsten in mice following oral exposure to sodium tungstate. Chem Res Toxicol. 2011;24(4):488–93.

    Article  CAS  Google Scholar 

  78. Kelly AD, Lemaire M, Young YK, Eustache JH, Guilbert C, Molino MF, Mann KK. In vivo tungsten exposure alters B-cell development and increases DNA damage in murine bone marrow. Toxicological Science. 2013;131(2):434–46.

    Article  CAS  Google Scholar 

  79. Centeno JA, Rogers DA, van der Voet GB, Fornero E, Zhang L, Mullick FG, Chapman GD, Olabisi AO, Wagner DJ, Stojadinovic A, Potter BK. Embedded fragments from U.S. military personnel—chemical analysis and potential health implications. Int J Environ Res Public Health. 2014;11:1261–78.

    Article  Google Scholar 

  80. Lemus R, Venezia CF. An update to the toxicological profile for water-soluble and sparingly soluble tungsten substances. Crit Rev Toxicol. 2015;45(5):388–411.

    Article  CAS  Google Scholar 

  81. Laulitch F, Brocato J, Cartularo L, Vaughan J, Wu F, Kluz T, Sun H, Oksuz BA, Shen S, Peana M, Medici S, Zoroddu MA, Costa M. Tungsten-induced carcinogenesis in human bronchial epithelial cells. Toxicol Appl Pharm. 2015;288:33–9.

    Article  Google Scholar 

  82. Menke A, Guallar E, Cowie CC. Metals in urine and diabetes in U.S. adults. Diabetes. 2016;65:164–71. Web

    CAS  Google Scholar 

  83. Navaz-Acien A, Silbergeld EK, Pastor-Barriuso R, Guallar E. Arsenic exposure and prevalence of type two diabetes in US adults. J Am Med Assoc. 2008;7:814–22.

    Article  Google Scholar 

  84. Yorita Christensen CKL. Metals in blood and urine, and thyroid function among adults in the United States 2007–2008. Int J Hyg Environ Health. 2013;216:624–32.

    Article  CAS  Google Scholar 

  85. Rotter I, Kosik-Bogacka D, Dolegowska B, Safranow K, Lubkowska A, Laszczyǹska M. Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome. Int J Environ Res Public Health. 2015;12:3944–61.

    Article  CAS  Google Scholar 

  86. Barberá A, Gomis RR, Prats N, Rodriguez-Gil JE, Domingo M, Gomis R, Guinovart JJ. Tungstate is an effective anti-diabetic agent in streptozotocin-induced diabetic rats: a long-term study. Diabetologica. 2001;44:507–13.

    Article  Google Scholar 

  87. Nagareddy PR, Vasudevan H, McNeil JH. Oral administration of sodium tungstate improves cardiac performance in streptozotocin-induced diabetic rats. Canadian Journal of Physiological Pharmacology. 2005;83:405–11.

    Article  CAS  Google Scholar 

  88. Keith LS, Moffett DB, Rosemond ZA, Wohlers DW. ASTDR evaluation of health effects of tungsten and relevance to public health. Toxicol Ind Health. 2007;23:347–87.

    Article  CAS  Google Scholar 

  89. Seiler R. Physical setting and natural sources of exposure to carcinogenic trace elements and radionuclides in Lahontan Valley, Nevada. Chem Biol Interact. 2012;196:79–86.

    Article  CAS  Google Scholar 

  90. Walker M, Fosbury D. Arsenic, As ((III)), and tungsten in Nevada county’s private water supplies. Journal of Water Health. 2009;7(2):293–301.

    Article  CAS  Google Scholar 

  91. McLoughlin JK, Chen JQ, Dosemeci M, Chen RA, Rexing SH, Wu Z, Hearl FJ, McCawley MA, Blot WJ. A nested case-control study of lung cancer among silica exposed workers in China. Br J Ind Med. 1992;49:167–71.

    Google Scholar 

  92. Bastian S, Busch W, Kühnel D, Springer A, Meissner T, Holke R, Scholz S, Iwe M, Pompe W, Gelinsky M, Potthoff A, Richter V, Ikonomidou C, Schirmer K. Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro. Environ Health Perspect. 2009;117(4):530–6.

    Article  CAS  Google Scholar 

  93. Moulin JJ, Wild P, Romazini S, Lasfargues G, Peltier A, Bozec C, Deguerry P, Pellet F, Perdrix A. Lung-cancer risk in hard-metal workers. Am J Epidemiol. 1998;148(3):241–8.

    Article  CAS  Google Scholar 

  94. Puester M, Fink C, von Schnakenburg C. Biocompatibility of corroding tungsten coils: in vitro assessment of degradation kinetics and cytotoxicity on human cells. Biomaterials. 2003;24(22):4057–61.

    Article  Google Scholar 

  95. Greer FR, Shannon M. Infant methemoglobinemia: the role of dietary nitrate in food and water. Pediatrics. 2005;116(3):784–786.

Download references

Acknowledgements

Undergraduate and graduate students and interns in the Chemical Hydrogeology Laboratory at the Department of Geology have been instrumental in many areas of data gathering and literature survey. The authors especially acknowledge Chad Hobson, Jamie Harrington, Trevor Spencer, Rachel Garth and Michelle Berube among others. This work has been funded by the National Science Foundation Grant Proposal Numbers NSF EAR-1014971 and EAR-1014946.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saugata Datta.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This article is part of the Topical Collection on Land Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, S., Vero, S.E., Hettiarachchi, G.M. et al. Tungsten Contamination of Soils and Sediments: Current State of Science. Curr Pollution Rep 3, 55–64 (2017). https://doi.org/10.1007/s40726-016-0046-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-016-0046-0

Keywords

Navigation