Skip to main content
Log in

Analysis of cranberry proanthocyanidins using UPLC–ion mobility–high-resolution mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cranberry proanthocyanidin oligomers were investigated using ultra performance liquid chromatography–ion mobility–high-resolution mass spectrometry (UPLC-IM-HRMS). A total of 304 individual A-type and B-type proanthocyanidins, including 40 trimers, 68 tetramers, 53 pentamers, 54 hexamers, 49 heptamers, 28 octamers, and 12 nonamers, were characterized. A-type proanthocyanidins appeared to dominate the cranberry proanthocyanidins. As the degree of polymerization increased, the abundance of molecules with multiple A-type double inter-flavan linkage or having doubly charged ions also increased. Under the same charge state, the drift times of proanthocyanidin ions increased with their degree of polymerization or the number of double inter-flavan linkages. For the same proanthocyanidin molecules, doubly charged ions had shorter drift times compared to their singly charged counterparts, which lead to separated trendlines in the ion mobility–mass plot. While consistent ion mobility was observed for most proanthocyanidins with the same degree of polymerization, coeluted isomeric ions of trimer and tetramer were detected by their unique drift times. Incorporation of ion mobility into HRMS proved to be of great value to characterize and analyze proanthocyanidins from complex sample matrices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D’Atri V, Causon T, Hernandez-Alba O, Mutabazi A, Veuthey J-L, Cianferani S, et al. Adding a new separation dimension to MS and LC-MS: what is the utility of ion mobility spectrometry? J Sep Sci. 2018;41:20–67.

    Article  Google Scholar 

  2. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH. Ion mobility-mass spectrometry. J Mass Spectrom. 2008;43:1–22.

    Article  CAS  Google Scholar 

  3. Holčapek M, Jirásko R, Lísa M. Recent developments in liquid chromatography–mass spectrometry and related techniques. J Chromatogr A. 2012;1259:3–15.

    Article  Google Scholar 

  4. Zheng X, Renslow RS, Makola MM, Webb IK, Deng L, Thomas DG, et al. Structural elucidation of cis/trans dicaffeoylquinic acid photoisomerization using ion mobility spectrometry-mass spectrometry. J Phys Chem Lett. 2017;8:1381–8.

    Article  CAS  Google Scholar 

  5. Fenn LS, McLean JA. Biomolecular structural separations by ion mobility–mass spectrometry. Anal Bioanal Chem. 2008;391:905–9.

    Article  CAS  Google Scholar 

  6. Woods AS, Ugarov M, Egan T, Koomen J, Gillig KJ, Fuhrer K, et al. Lipid/peptide/nucleotide separation with MALDI-ion mobility-TOF MS. Anal Chem. 2004;76:2187–95.

    Article  CAS  Google Scholar 

  7. Koomen JM, Ruotolo BT, Gillig KJ, McLean JA, Russell DH, Kang M, et al. Oligonucleotide analysis with MALDI–ion-mobility–TOFMS. Anal Bioanal Chem. 2002;373:612–7.

    Article  CAS  Google Scholar 

  8. Santos-Buelga C, Scalbert A. Proanthocyanidins and tannin-like compounds—nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric. 2000;80:1094–117.

    Article  CAS  Google Scholar 

  9. Aron PM, Kennedy JA. Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res. 2008;52:79–104.

    Article  CAS  Google Scholar 

  10. Es-Safi NE, Guyot S, Ducrot PH. NMR, ESI/MS, and MALDI-TOF/MS analysis of pear juice polymeric proanthocyanidins with potent free radical scavenging activity. J Agric Food Chem. 2006;54:6969–77.

    Article  CAS  Google Scholar 

  11. Monagas M, Quintanilla-López JE, Gómez-Cordovés C, Bartolomé B, Lebrón-Aguilar R. MALDI-TOF MS analysis of plant proanthocyanidins. J Pharm Biomed Anal. 2010;51:358–72.

    Article  CAS  Google Scholar 

  12. Engström MT, Pälijärvi M, Fryganas C, Grabber JH, Mueller-Harvey I, Salminen J-P. Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J Agric Food Chem. 2014;62:3390–9.

    Article  Google Scholar 

  13. Friedrich W, Eberhardt A, Galensa R. Investigation of proanthocyanidins by HPLC with electrospray ionization mass spectrometry. Eur Food Res Technol. 2000;211:56–64.

    Article  CAS  Google Scholar 

  14. Rue EA, Glinski JA, Glinski VB, van Breemen RB. Ion mobility-mass spectrometry for the separation and analysis of procyanidins. J Mass Spectrom. 2019. https://doi.org/10.1002/jms.4377.

  15. Wang Y, Vorsa N, Harrington PDB, Chen P. Nontargeted metabolomic study on variation of phenolics in different cranberry cultivars using UPLC-IM-HRMS. J Agric Food Chem. 2018;66:12206–16.

    Article  CAS  Google Scholar 

  16. Giles K, Williams JP, Campuzano I. Enhancements in travelling wave ion mobility resolution. Rapid Commun Mass Spectrom. 2011;25:1559–66.

    Article  CAS  Google Scholar 

  17. Xie D-Y, Dixon RA. Proanthocyanidin biosynthesis—still more questions than answers? Phytochemistry. 2005;66:2127–44.

    Article  CAS  Google Scholar 

  18. Venter P, Muller M, Vestner J, Stander MA, Tredoux AG, Pasch H, et al. Comprehensive three-dimensional LC× LC× ion mobility spectrometry separation combined with high-resolution MS for the analysis of complex samples. Anal Chem. 2018;90:11643–50.

    Article  CAS  Google Scholar 

  19. Yassin GH, Grun C, Koek JH, Assaf KI, Kuhnert N. Investigation of isomeric flavanol structures in black tea thearubigins using ultraperformance liquid chromatography coupled to hybrid quadrupole/ion mobility/time of flight mass spectrometry. J Mass Spectrom. 2014;49:1086–95.

    Article  CAS  Google Scholar 

  20. O’Kennedy SJ, de Villiers A, Brand DJ, Gerber WJ. A variable temperature 1H NMR and DFT study of procyanidin B2 conformational interchange. Struct Chem. 2018;29:1551–64.

    Article  Google Scholar 

  21. Kuhnert N, Yassin GH, Jaiswal R, Matei MF, Grün CH. Differentiation of prototropic ions in regioisomeric caffeoyl quinic acids by electrospray ion mobility mass spectrometry. Rapid Commun Mass Spectrom. 2015;29:675–80.

    Article  CAS  Google Scholar 

  22. Wang Y, Singh AP, Hurst WJ, Glinski JA, Koo H, Vorsa N. Influence of degree-of-polymerization and linkage on the quantification of proanthocyanidins using 4-dimethylaminocinnamaldehyde (DMAC) assay. J Agric Food Chem. 2016;64:2190–9.

    Article  CAS  Google Scholar 

  23. Lin LZ, Sun J, Chen P, Monagas MJ, Harnly JM. UHPLC-PDA-ESI/HRMSn profiling method to identify and quantify oligomeric proanthocyanidins in plant products. J Agric Food Chem. 2014;62:9387–400.

    Article  CAS  Google Scholar 

  24. Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, et al. Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J Agric Food Chem. 2003;51:7513–21.

    Article  CAS  Google Scholar 

  25. Singh AP, Singh RK, Kim KK, Satyan KS, Nussbaum R, Torres M, et al. Cranberry proanthocyanidins are cytotoxic to human cancer cells and sensitize platinum-resistant ovarian cancer cells to paraplatin. Phyther Res. 2009;23:1066–74.

    Article  CAS  Google Scholar 

  26. Howell AB, Reed JD, Krueger CG, Winterbottom R, Cunningham DG, Leahy M. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry. 2005;66:2281–91.

    Article  CAS  Google Scholar 

  27. Neto CC, Krueger CG, Lamoureaux TL, Kondo M, Vaisberg AJ, Hurta RA, et al. MALDI-TOF MS characterization of proanthocyanidins from cranberry fruit (Vaccinium macrocarpon) that inhibit tumor cell growth and matrix metalloproteinase expressionin vitro. J Sci Food Agric. 2006;86:18–25.

    Article  CAS  Google Scholar 

  28. Ruotolo BT, Benesch JLP, Sandercock AM, Hyung S-J, Robinson CV. Ion mobility–mass spectrometry analysis of large protein complexes. Nat Protoc. 2008;3:1139–52.

    Article  CAS  Google Scholar 

  29. Kindy JM, Taraszka JA, Regnier FE, Clemmer DE. Quantifying peptides in isotopically labeled protease digests by ion mobility/time-of-flight mass spectrometry. Anal Chem. 2002;74:950–8.

    Article  CAS  Google Scholar 

  30. Hall Z, Politis A, Bush MF, Smith LJ, Robinson CV. Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J Am Chem Soc. 2012;134:3429–38.

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the Agricultural Research Service of the U.S. Department of Agriculture and an Interagency Agreement with the Office of Dietary Supplements of the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 736 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., de B. Harrington, P., Chang, T. et al. Analysis of cranberry proanthocyanidins using UPLC–ion mobility–high-resolution mass spectrometry. Anal Bioanal Chem 412, 3653–3662 (2020). https://doi.org/10.1007/s00216-020-02601-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02601-z

Keywords

Navigation